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Abstract. The aim of the article is to provide a comprehensive survey of formal meth-
ods currently widely used to model the gradation of beliefs. Thus, it brings together in
an insightful way several frameworks representing probabilistic, multi-valued and graded
modalities’ approaches. They enable to express, in various manners, uncertainty of agents’
beliefs and, even more, the process of persuasion which is in fact related to the phenomenon
of uncertainty.

1 Introduction

Although a great deal of interest has focused recently on logics of beliefs, there has been relatively
little work on providing formalisms for modeling the gradation of beliefs. The need for such a
representation arose together with the need for handling the uncertainty management in artificial
systems and theoretical computer science. Clearly, there are such situations when the intelligent
agents must be able to reason and act using unreliable, incomplete or statistical data.

However, our interest in techniques of representing beliefs’ gradation goes even further. Our
motivation is to choose the most adequate formalism to reason about the process of persuasion.
The gradation of beliefs plays an important role in describing persuasiveness of particular per-
suaders or arguments. Indeed, throughout the process of persuasion the belief-attitudes are not
only black or white (“It is for sure true”, “It is for sure false”), but they represent various shades
of uncertainty such as “Maybe you are right”, “I am almost sure that this is true”, “It seems to
be false”, etc. Simply stated the gradation of beliefs enables to express that different proponents
using different means of convincing result in unlike effects with respect to a given audience - the
audience may become convinced with a various strength (in a various degree). Consider the fol-
lowing statements: “I chose the lesser of two evils when voting for the party X”, “The truth is
that I didn’t vote for X - I rather voted against the party Y ”. We may understand these as if the
speaker was not absolutely certain whether X’s electoral program was good, but he voted for X
anyway. That is, the party did not persuade the person in a high degree, however it managed to
achieve the higher grade than the other party did. Associating the value of 0 with an attitude of
“absolutely for no” and 1 with “absolutely for yes”, we shall say that the person is convinced to
X in the degree lesser than 0.5, but still higher than the degree assigned to Y ’s opinions. In fact,
in real-life practice the rivals may be so weak that the grade assigned to X’s reputation may be
pretty low, but you vote for X anyway.
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The important question becomes: how are we going to model the gradation of beliefs? Despite
applying various mathematical or logical tools, this task is still viewed as very difficult and un-
satisfactorily accomplished from the formal point of view. Different authors have argued for the
appropriateness of different formalisms to capture shades of uncertainty. In the paper, we concen-
trate on the widespread techniques used to represent gradation of beliefs, namely: probabilistic,
multi-valued and graded modalities’ representations.

The rest of the paper is organized as follows. In the next section, we discuss the probabilistic
approach including the subjective Bayesian method, the certainty factor model, the Dempster-
Shafer theory and the probability modal logic. In the chapter 3, we review multi-valued system
introduced by Jerzy Loś as well as Multivalued Logic of Knowledge and Time. In the last section,
we demonstrate graded modalities’ formalism interpreted epistemically by W. van der Hoek and
J.J. Meyer

2 Probabilistic approach

Probability seems to be a very intuitive and natural tool to describe gradation of beliefs. The prob-
abilistic representation has been developed within two trends. The first “camp” adapts classical
mathematical theory of probability quite literally. The only difference is that the probability gains
the subjective interpretation according to which it is a mode of one’s judgment. The second trend
combines the probability theory with Kripke-style semantics. Roughly speaking, the basic idea is
to place probability measure on the set of possible worlds. In the next subsections, we describe
these two trends in detail.

2.1 Theory of subjective probability

The first probabilistic trend has been strongly developed since the 1970s in the research of uncer-
tainty management in expert systems (artificial intelligence). Three main theories were elaborated
at that time: the subjective Bayesian method, the certainty factor model and the Dempster-Shafer
theory. In the subjective probability framework, uncertainty is reduced more or less directly to
mathematical probability. That is, we think of probability as of a bet which an individual makes
with respect to a given opinion. For example, you may give odds 1:9 for the opinion that life on
Mars exists risking 1 dollar to gain 9 [15]. Then, it corresponds to probability of 1

10 which can be
understood as a degree of your belief about life on Mars.

The subjective Bayesian method The method applies Bayes’ theorem in the process of sta-
tistical inference in which an evidence is used to update or to newly infer the probability that a
hypothesis may be true.3 More formally speaking, the idea is to find conditional probability of a
hypothesis h given that an evidence e has been observed. Say that you are interested how probable
is the event that a particular patient suffers from influenza (hflu) assuming that he shows the
symptoms of cough (ecough). For many diseases, a relative frequency of the disease in a specific
population, i.e. a prior probability, is known. Say that both of the prior probabilities are avail-
able, i.e. probabilities of the hypothesis P (hflu) and the evidence P (ecough) . What we want to
find is a conditional probability of the hypothesis given evidence, i.e. a posterior probability
P (h|e). In most of the cases of real-life practice, those probabilities are not available. However, it
is relatively easy to find a conditional probability of a type P (e|h). In our example, P (ecough|hflu)
is the probability that the patient who suffers from flu has cough. Using Bayes’ theorem we can
now compute a posterior probability that the patient showing signs of a cough has an influenza:

P (hflu|ecough) = P (ecough|hflu)·P (hflu)
P (ecough) .

Assuming that the events we consider are mutually exclusive and exhaustive, we may reformu-
late Bayes’ theorem to the more general version:
3 Bayes’ theorem is valid not only in subjective but in all interpretations of probability.



P (hi|e1, . . . , em) = P (e1|hi)...P (em|hi)·P (hi)∑
j=1,...,n P (hj)·P (e1|hj)·····P (em|hj)

for i = 1, . . . , n.

That allows to reason about the probability of a particular disease (hi) from a set of possible
diseases {h1, . . . , hn}, given a set of observed symptoms {e1, . . . , em}. In this manner, the Bayes’
theorem enables to revise (graded) beliefs about a given hypothesis in light of new evidences.

The Bayesian technique has become an active topic of investigation for researchers in such
diverse fields as mathematics, economics or artificial intelligence. In the 1970s, the so-called sub-
jective Bayesian method was introduced for the purpose of handling uncertain information in
the expert system PROSPECTOR designed by R.O. Duda, P.E. Hart and N.J. Nilsson [7]. To
avoid problems encountered in applying probability theory to expert systems in a straightforward
manner, the notion of probability was replaced by the notions of odds and likelihood (see e.g. [7]
or [19] for more details).

The certainty factor model The second technique was constructed in the 1970s by E.H. Short-
liffe and B.G. Buchanan for dealing with uncertain information in the expert system MYCIN (see
e.g. [23]). Although the validity of this technique has been challenged, it has enjoyed widespread
use mainly due to its computational simplicity and intuitive formulation.

The basic idea is to assign a numerical weight to the consequent of each rule of a form: if
evidence then hypothesis, in a rule-based system. Interestingly, Shortliffe and Buchanan argue that
P (h|e) = 1−P (h|e) (where h is the complement of h) does not correspond to the real-life practice
of how experts assign values of uncertainty to the various hypotheses. The authors refer to the
observation that an expert is often unwilling to accept that an evidence which supports a given
hypothesis to a degree d refutes it to a degree of 1− d at the same time. As a result the numerical
weight, they associate with a rule, is not a probability but a certainty factor which is a difference
of two measures (each assigned a value from 0 to 1): the measure of belief showing the degree to
which an evidence increases the belief in a particular hypothesis, and the measure of disbelief
expressing the degree to which an evidence decreases the belief in a hypothesis. The value of
certainty factor belongs to the interval [−1, 1] and is computed as follows: CF = MB−MD. The
certainty factors are then combined to infer the overall certainty associated with the hypotheses
on a basis of the known evidences.

The Dempster-Schafer theory (Evidence theory) The theory was introduced by Arthur
Dempster in the 1960s [5, 6], and further extended by Glenn Schafer in the 1970s [22]. It was
applied to model inexact reasoning in expert systems in 1980s. In this approach the probability
theory is modified in a highest degree mainly by associating the probability (uncertainty) with
sets of hypotheses, but not requiring assignment to the individual hypotheses. Interestingly, the
motivation was to distinguish uncertainty from ignorance which resulted from incompleteness of
information. The serious disadvantage of the Evidence theory is its computational complexity.

The basic notion is a probability assignment m defined for subsets of a set of hypotheses Θ
(called the frame of discernment). For x ⊂ Θ the function m assigns zero to the empty set, the value
of [0, 1] to each x, and

∑
x⊂Θ m(x) = 1. Let us pause here for a moment to give some intuitions.

Say that in our highly simplified example, you consider three hypotheses which are to explain the
symptoms of cough: influenza, virus infection and allergy (i.e. Θ = {flu, virus, allergy}). Assume
that you believe with the uncertainty, say, 0.8 that the patient suffers rather from one of the
infections, i.e. m({flu, virus}) = 0.8, however you are unable to distinguish which of these two
diagnoses show a real cause of cough. As we noted above, the standard probability theory would
demand assigning the probability to each individual hypothesis - in particular to the diagnosis of
influenza itself. When there is no information giving priority to one of these two hypotheses, each
would be assigned probability of 0.4. In Dempster-Schafer theory that needn’t be done. In this
way, the difference between uncertainty and ignorance is highlighted.

The probability m expresses the belief assigned only to a set of hypotheses x itself. However,
the total belief in x shall depend also on the beliefs in subsets of x. Thus, the cumulative graded
belief is defined in terms of a belief function Bel : 2Θ −→ [0, 1] such that Bel(x) =

∑
y⊂x m(y)



for each x ⊂ Θ. The belief function has an interesting property: Bel(x) + Bel(x) ≤ 1. This means
that the sum of the degrees of beliefs in the set of hypotheses and the set’s complement may be
lesser than 1.

These three concepts are successive extensions of mathematical probability theory. As a result
they “inherit” well-elaborated formal apparatus. On the other hand, they share some prop-
erties which may be viewed as serious restrictions when applying them for computing degrees
of beliefs in practice. First of all, they assume the independence of evidences. Clearly, such an
assumption is inconvenient since in real-life we often deal with events which influence one another
like e.g. a cough and a headache. The second assumption is the exhaustiveness and the mutual
exclusiveness of the elements of the subsets of hypotheses. This condition is also difficult to accom-
plish in real-life practice. Designing an expert system, it is hard to collect all the hypotheses which
possibly explains the symptoms observed, such as all the diagnoses for signs of cough. Finally,
these approaches do not provide a calculus with thoroughly elaborated syntax and semantics, al-
though it is relatively easy to do. In this manner, the belief operator is not explicitly expressed in
the language. As a result, we are unable to distinguish the objective statements referring to the
reality from the subjective ones concerning beliefs about the reality. This means that we cannot
say that an agent is convinced of a thesis which is actually false.

2.2 Probabilistic modal logic

In the 1980s, the second trend started to be developed. AI researchers, interested in modeling
knowledge and formalizing reasoning methods for distributed intelligent systems, turned their
attention to epistemic and doxastic modal logics. To extend this approach to handling the un-
certainty in the systems of agents, the modal logic was combined with probability theory. The
basic idea is to characterize the grades of beliefs as the probability on possible worlds which
is derived from the statistical data at our disposal. To get some intuition, consider the example
given in [14]. Say that you have a statistical information that more than 60% of birds fly. It may
be understood that the probability that a randomly chosen bird flies is greater than 0.6. Further,
assume that Tweety is a bird. From these two pieces of data, you can infer how probable it is for
Tweety to fly - you shall believe it with the degree of uncertainty greater than 0.6.

We characterize probabilistic modal logic basing on the system AXMEAS introduced by
Ronald Fagin, Joseph Y. Halpern and Nimrod Meggido in [9] and further extended by the first
two authors in [8].4 They take inspiration from Bacchus’ statistical logic [1] (which led Halpern to
construct the first variant of probability logic [14]) and Nilsson’s probability logic [21] (AXMEAS is
its formalization). To start with we demonstrate syntax and semantics of this logic. Let {1, . . . , n}
be a set of agents and V0 a fixed infinite set of propositional variables. The set of propositional
formulas is the closure of V0 under the boolean operations: ¬ (negation, “not”), ∧ (conjunction,
“and”). The formula true is defined to be an abbreviation for the formula p ∨ ¬p where p is a
fixed propositional variable. A basic probability formula is an expression: wi(α) ≥ b where b
is a rational number and i ∈ {1, . . . , n}. This formula expresses agent i’s graded belief in α and
intuitively means “according to i, formula α holds with probability at least b”. Moreover, some
useful abbreviations are introduced, e.g. wi(α) = b for (wi(α) ≥ b) ∧ (wi(α) ≤ b). Thus, a fact
that a degree of i’s belief about Tweety’s ability to fly is greater than 0.6 may be expressed in the
language of AXMEAS in the following way:

wi(p) > 0.6 where wi stays for “probability according to agent i” and p for “Tweety flies”.5

The formulas are interpreted in the probability structure M = (S, v, P ) where S is a
set of states (or possible worlds), v is a function which assigns to every state a valuation of

4 For ease of overview we choose the elements of the system that emphasize only those aspects which are
important for modeling beliefs’ gradation. Moreover, we slightly modify the notation to standardize the
presentation throughout the paper.

5 Sometimes, they do not make a straightforward connection between probability and degrees of beliefs.
However, some of the articles (e.g. [14]) show that they identify these two notions.



propositional variables v : S −→ {0,1}V0 and P is a probability assignment which assigns to each
agent i ∈ {1, . . . , n} and state s ∈ S a probability space Pi,s = (Si,s, χi,s, µi,s) where

– Si,s ⊆ S (called sample space),
– χi,s is a σ-algebra of subsets of Si,s (called measurable sets), i.e., a set of subsets of Si,s

containing the empty set and closed under complementation and countable union,
– µi,s is a probability function on the measurable sets µi,s : χi,s −→ [0, 1], i.e. µi,s is a

mapping from χi,s to the real interval [0, 1].6

Intuitively, the probability space Pi,s shows agent i’s probabilities on events, given that the
state is s. We associate a truth value with each formula α, writing M, s |= α if the value 1 is
associated with α by a state s of a model M . Assuming that M, s |= α is inductively defined, we
may associate with each formula α the set of the states in which the formula is true and which
belongs to Si,s, i.e.

Si,s(α) = {s′ ∈ Si,s : M, s′ |= α}.
Given a probability structure M and a state s, we define the semantics of the probability
formulas of AXMEAS as follows:

M, s |= wi(α) ≥ b iff µi,s(Si,s(α)) ≥ b.7

This needs some explanation. According to the Kripke-style semantics, the states (worlds)
may represent, roughly speaking, different possible “versions” (“images”) of reality. Obviously,
only one image is actual, but we are not certain which one is that. In non-probabilistic approach,
the individual believes that Tweety flies only when it is true in every state she considers as a
possible version of the reality. The idea for adding the probability is that a formula can be true
only in some of such states and the (graded) belief is generated anyway. Thus, “Tweety flies”
would hold in some states possible from the i’s viewpoint, and not in others. Given a model
M and a state s, an agent i believes that Tweety flies with a degree greater than 0.6 when
according to i’s probability assignment at s, the set of worlds where “Tweety flies” holds (i.e. the
set Si,s(p) = {s′ ∈ Si,s : M, s′ |= p}) has the probability measure greater than 0.6. Formally, we
shall write: M, s |= wi(p) > 0.6 iff µi,s(Si,s(p)) > 0.6.

Say that the probability structure is a tuple M = (S, v, P ) where S = {s, s1, . . . , s10} and s
represents the real world. Let us associate with an agent i and a state s (by means of an assignment
P ) the sample space consisting only of s and s1 with s and s1 both being measurable and having
measure 0.3 and 0.7, respectively. That is, the probability space is Pi,s = (Si,s, χi,s, µi,s) such
that Si,s = {s, s1}, χi,s = {ø, Si,s, {s}, {s1}} and µi,s = {〈ø, 0〉, 〈Si,s, 1〉, 〈{s}, 0.3〉, 〈{s1}, 0.7〉}.
Further, assume that the sentence ”Tweety flies” is false in s and true in s1, i.e. v(s)(p) = 0 and
v(s1)(p) = 1. Now, is it a case that i’s degree of belief about Tweety’s ability to fly is greater
than 0.6 in a state s? We have Si,s(p) = {s′ ∈ Si,s : M, s′ |= p} = {s1}. The measure of this set is
greater than 0.6 since it equals to 0.7. Thus, we have µi,s(Si,s(p)) > 0.6, so M, s |= wi(p) > 0.6.

Now it is time to give some comments. First of all, observe that an accessibility relation
assumed in the standard doxastic semantics is here replaced with a probability measure. As a
result, this logic is capable of modeling the situations in which an agent considers some worlds to
be more likely than others. Imagine two players Kasia and Magda, each drawing one card from a
stack of three cards {Ace, King, the Ten}. Assume that Kasia holds King and she tries to guess
what card Magda has. She imagines two versions of the reality - in s1 Magda holds the Ten and
in s2 she holds Ace. In standard doxastic semantics, both of these states are accessible by means
of Kasia’s doxastic relation what corresponds to the described situation that Kasia considers both
of the versions possible and having the same chances. The question becomes: how are we going
to model the case when Kasia evaluates s2 as more likely version of the reality since it seems to
her that Magda is always lucky at cards? As we mentioned above, the key to accomplish this is
6 To simplify an overview, we assume here the measurable case of the logic (see chapter 3 of [9] for the

more general, nonmeasurable case).
7 The semantics of propositional formulas is defined in the standard manner.



to replace a doxastic relation with a probability function. In this manner, by labeling the sets of
states with different values we can assign greater certainty with the state s2 (say 0.8) than with
s1 (say 0.2). Thus, in a state s1 we shall have µKasia,s1{s2} > µKasia,s1{s1}.

Secondly, from the viewpoint of the adequacy of beliefs’ description the probability modal logic
proposed in [8] introduces important extension with respect to the prior versions (see e.g. [9]). That
is, it relates a probability function to an agent and a state. Associating different measures with
each agent allows individuals to vary in opinions and relating probability to a state allows an
individual to have different opinions depending on circumstances. In prior papers, the authors
define the probability structure as the tuple M = (S, χ, µ, v) where S is a set of states, χ is a
σ-algebra of subsets of S, µ is a probability function µ : χ −→ [0, 1], and v is a valuation function.
Say that the set {s1} ⊆ S has measure 0.6, i.e., µ{s1} = 0.6. Clearly, in this approach the measure
is the same for each agent and each state. That is, since there is only one probability function
all individuals must share beliefs of the same degrees (in particular, since µ{s1} = 0.6 for each
i ∈ {1, . . . , n}) no matter at what state (µ{s1} = 0.6 for each s ∈ S).

Finally, due to placing probability on the set of worlds, we obtain the subjective notion of
probability used as gradation of beliefs in contrast to the objective probability used as statistical
measures. The latter represents various assertions about the objective statistical relationships in
the (one) actual world, e.g. “More than 60% of all birds fly”, “54% of Poles voted for Lech Kaczyn-
ski in 2005”. On the other hand, the sentences like “Tweety flies” can be associated only with
probability interpreted subjectively. Objectively, i.e. when we assume only one state representing
the real world, this sentence holds either with probability 1 or probability 0 since in reality Tweety
either does fly or does not (above we assumed that p is objectively false since in the actual world s
it does not hold). When an agent i starts to create images of the reality, say s1, then her subjective
belief about Tweety becomes graded. As we showed before M, s |= wi(p) = 0.7. That is, i believes
in a degree 0.7 that Tweety flies. Interestingly, observe that according to this approach beliefs
may be false (just as it is assumed in the standard doxastic logic). Although i believes in a degree
0.7 that Tweety flies, objectively Tweety does not since p is false in the reality represented by s
(recall that v(s)(p) = 0). In this sense beliefs are subjective as they may vary from how the reality
objectively is.

3 Multi-valued representation

Multi-valued logics seem to be particularly appropriate frameworks for modeling uncertainty of
opinions. Although there are so many systems which explore more than two logical values, there
is relatively little research on connections between multi-valued formalisms and reasoning about
degrees of beliefs. We present two approaches and discuss the pros and cons. Especially, we focus on
possibilities of expressing various grades of beliefs of different individuals directly in the language
of the logic under consideration.

3.1 The System L (Jerzy Loś)

In this subsection, we show the logic L introduced by Jerzy Loś in the article [18] from 1948. In
the L-language, the set of first-order logic formulas is extended by a formula of the form: Lxα,
where x is an individual variable and α is a formula of the system L. The intended reading of Lxα
is: an agent x believes that α.

The interesting issue is the axiomatization of the L-system. Its formulation somehow reminds
of today’s standard way of how beliefs are defined in doxastic modal logic (we mean KD4 system).
However, L-axioms requires beliefs to have slightly different attributes from what is assumed
nowadays. The system L has two inference rules: Modus Ponens and Substitution. It has also the
following axioms:

L0 classical propositional tautologies
L1 Lxp ↔ ¬Lx¬p (consistency and completeness of beliefs)



L2 Lx(p → q) → (Lxp → Lxq) (belief distribution)
L3 ∀xLxp → p (collective infallibility)
L4 LxLxp ↔ Lxp (infallibility and omniscience with respect to own beliefs)

The properties of beliefs postulated in axioms L0 and L2 are the same as in the standard ap-
proach. L0 expresses that individuals believe all tautologies of classical propositional calculus. The
axiom L2 requires the consequence in believing. It corresponds to K-axiom in KD4. Remaining
axioms differ from what is assumed nowadays. They require more idealized attributes of beliefs.
The axiom L1 expresses beliefs’ consistency and completeness, i.e. for every two contradictory
sentences, the agent must believe one of them and disbelieve the other. In other words, the im-
plication “→” says that I cannot accept the sentence and its negation at the same time, and the
implication “←” - that I must have a conviction with respect to everything (that is, positive or
negative opinion but not neutral). The L1-implication “→” has its equivalent in the system KD4
(i.e. D-axiom). Further, the axiom L3 assumes collective infallibility. This means that whatever
is believed by everyone is true. Finally, the axiom L4 demands infallibility and omniscience with
respect to one’s own beliefs. That is, the implication “→” says that my opinions about my beliefs
are true, and the implication “←” - that I am aware of all my beliefs. The L4-implication “←”
corresponds to 4-axiom in the system KD4.

We can nicely capture the idea of multi-values in L system considering the truth-table defined
for two agents a and b (see Table 1). Suppose that they disagree with respect to some matters.
As a result, the set of all sentences divides into four classes. The class symbolized as 0 consists
of the sentences which both individuals disbelieve. The class 1

3 includes the sentences which the
agent a believes and the agent b does not. The class 2

3 , inversely, includes the sentences which a
does not believe and b does believe. The class symbolized by 1 consists of the sentences that both
individuals believe.

p Lap Lbp

0 0 0

1
3

1 0

2
3

0 1

1 1 1

Table 1. Four-valued truth-table for beliefs of two agents (called a and b).

Clearly, in this system it is impossible to describe gradation of individual beliefs. Talking about
agent a’s beliefs, we may express nothing but her absolute certainty (“positive” or “negative”).
That is, the formula Lap may be assigned just one of two values: 1 (when a believes p) or 0 (when
a does not believe p). On the other hand, what is expressed by gradation it is a type of group’s
disagreement. For the group of two individuals, a grade 1

3 denotes that the first agent believes
given sentence and the second does not, and a grade 2

3 - the opposite way. In other words, when
a value for a formula Lap is 1 and for Lbp is 0 then in such a case the formula p is assigned a
fraction 1

3 . Interestingly, notice that the degrees cannot be directly expressed in the syntax of L
since they are defined just by means of semantics of its formulas.

3.2 Multivalued Logic of Knowledge and Time

Another interesting approach to representing knowledge is multi-valued µK-calculus (mv µK)
introduced in [17]. It is a very expressive logic which allows specifying knowledge and time in
multi-agent systems. The main aim of [17] is to show a model checking technique which can be



used for verifying properties involving multivalued µK-calculus or its subsets. However, we focus
only on the part concerning modeling knowledge.

Let us start with describing syntax and semantics of mv µK. The semantics is based on the
notion of interpreted systems which is commonly used in multi-agent scenarios. It assumes a set
of agents Agt = {1, 2, . . . , n} (in fact, it is a set of names of agents marked by natural numbers).
For every agent i ∈ Agt we assign two sets: Loci (a set of local states of agent i) and Acti (a set
of actions that agent i can execute). As a result, a set of all global states of the system is defined
as a subset of the Cartesian product of local states of agents: S ⊆ Loc1 × · · · × Locn. Moreover,
for every agent i ∈ Agt we define a function Pi : Loci → 2Acti which determines which actions
can be performed at which local state. Finally, the computation which takes place in the system
is modeled by means of a transition function t : S ×Act× S → L where Act ⊆ Act1 × · · · ×Actn
is the set of joint actions and L is a set of values which can be assigned to transitions.8 Based
on this assumptions, a multi-valued transition relation R : S × S → L × L is defined as follows:
R((l1, . . . , ln), (l′1, . . . , l

′
n)) = (v1, v2) iff there exist actions a1 ∈ P1(l1), . . . , an ∈ Pn(ln) such that

t((l1, . . . , ln), (a1, . . . , an), (l′1, . . . , l
′
n)) = v1.9

Now we are ready to give a multi-valued model in which formulas of mv µK are interpreted.
Given a set of agents Agt = {1, . . . , n} and a set of propositional variables V0, by a model we
understand a tuple M = (S,R,∼1, . . . ,∼n, V,L), where

– S is a finite state of global states of the system,
– R : S × S → L× L is the multi-valued transition relation on S,
– ∼i⊆ S × S (i ∈ Agt) is an epistemic accessibility relation for each agent i ∈ Agt defined by

s ∼i s′ iff li(s′) = li(s), where li : S → Loci extracts the local state of agent i from a global
state s; observe that ∼i is an equivalence relation,

– V : S × V0 → L is a valuation function for propositional variables,
– L = (L,≤,−) is a De Morgan algebra.

For expressing knowledge properties of multi-agent systems in mv µK the well-known epis-
temic modalities Ki, EΓ , DΓ are explored. We read them as follows: Ki - “agent i knows”,
EΓ - “everybody in group Γ knows”, DΓ - “group knowledge that follows from the individual
knowledge of all members of a group Γ”. Intuitively, everybody knows a thesis α, written EΓ α,
iff nobody reckons with an epistemic alternative in which ¬α is true. DΓ denotes knowledge that
is implicitly available within a group Γ : it is the knowledge available to someone who is able to
collect the knowledge of all the agents in the group (for instance by sharing the knowledge by
means of communication). What is more, in mv µK existential versions of the above operators are
used: Ki, EΓ , DΓ . Interestingly, the more sophisticated “common knowledge” operator is defined
CΓ α. It is true if everyone in Γ knows α, everyone in Γ knows that everyone in Γ knows α, etc.

The semantics of mv µK is given by the function [·]Mρ (s), which, for each formula α of mv µK,
a model M , a state s in M , and a valuation of the fixed point variables ρ : V ar → LS , returns
the value of α at the state s of the model M for the valuation ρ. For propositional and fixed point
variables as well as boolean connectives the definition is standard. We quote the semantics only
for epistemic modalities:

– [Kiα]Mρ (s) =
⋂
{s′∈S|s∼is′}[α]Mρ (s′),

– [EΓ α]Mρ (s) =
⋂

i∈Γ [Kiα]Mρ (s),
– [DΓ α]Mρ (s) =

⋃
i∈Γ [Kiα]Mρ (s),

– [Kiα]Mρ (s) =
⋃
{s′∈S|s∼is′}[α]Mρ (s′),

– [EΓ α]Mρ (s) =
⋃

i∈Γ [Kiα]Mρ (s),
– [DΓ α]Mρ (s) =

⋂
i∈Γ [Kiα]Mρ (s).

Now, we give an example to show more intuitions concerning the operator K. Consider the
agent 1 working for the bank, whose task is to decide if a customer, call it agent 2, applying
8 In [17] it is assumed that t(s, a, s′) = t(s, a′, s′) for any s, s′ ∈ S and a, a′ ∈ Act.
9 For the explanations about v2 see [17]. We do not mention this since it is not essential for our study.



for a loan is to be granted that loan or not. For this purpose, the agent checks the reliability
of the customer in different databases which contain information about bad debtors. Let p be
a proposition expressing that “Agent 2 is a good debtor”. Furthermore, assume that at state s1

agent 1 considers as its epistemic alternative four states s1, s2, s3, s4 (i.e. s1 ∼1 sj for j = 1, 2, 3, 4)
such that v(s1, p) = 3

4 , v(s2, p) = 1, v(s3, p) = 3
4 , v(s4, p) = 1

4 . The value 1 means that according
to databases agent 2 is a good debtor for sure, 3

4 - he is rather a good debtor, 1
4 - he is rather a bad

debtor. So, the value of the formula K1p at the state s1 is
⋂

s∈{s1,s2,s3,s4}[p]Mρ (s) = 3
4∩1∩ 3

4∩ 1
4 = 1

4 .
As a result, we say that agent 1 knows that agent 2 is rather a bad debtor.

The Multivalued Logic of Knowledge and Time illustrates how a multimodal approach can
be adopted in order to reason about different degrees of knowledge of agents in a given system.
Although a multivalued formalism provides elegant tools and methods which allow for expressing
and analyzing graded knowledge it has some serious inconvenience. Note that in fact we can only
determine a logical value of a given epistemic formula Kiα but we cannot say with what degree
an agent i knows α. Of course those two issues can be identified. That is, we can assume that i
knows α with degree d iff the value of Kiα equals d. However, in such a case it is not possible to
express nested statements like that: “Agent 1 knows with degree d1 that agent 2 knows α with
degree d2”. Instead of that only the evaluation of the formula K1K2α can be given. Needless to
explain that it is not the same. Consequently, nesting of epistemic formulas with different degrees
is not possible.

Furthermore, even if a study is limited to expressions of the form Kiα (where α does not contain
epistemic operators) we still do not talk about a degree of knowledge of agent i until a semantic
model and an evaluation of this formula are given. It follows from the fact that degrees are not
indicated directly in the syntax of formulas. Therefore, in some cases specification of properties
concerning graded knowledge of agents is very difficult or even impossible.

The most important question which is under our discussion is whether it is possible to adapt
mv µK logic to reason about beliefs. The attempt to give an answer we made in [2]. To show
the main difficulty let us return to the example mentioned above. Observe that agent 1 has four
epistemic alternatives. In three of them it stems from databases that the debtor is credible or
rather credible and only in one of them the debtor is perceived as unreliable. If we talk about
knowledge of agents10 the conclusion that agent 2 is a bad debtor and the loan should be refused
is not surprising. A warning from one source is sufficient to classify the debtor to not granted
clients. Now assume that ∼i is a doxastic relation by means of which we define the semantics of
a belief modality Bi, [Biα]Mρ (s) =

⋂
{s′∈S|s∼is′}[α]Mρ (s′). Moreover, let us delete the assumption

that ∼i is reflexive. As a result, all states an agent i considers as its doxastic alternative can
mean unreliable sources on the basis of which the agent tries to make a decision. Thereby, if the
agent gets positive information from databases s1, s2, s3 and one negative from database s4 it has
grounds for thinking that the result obtained by the database s4 is false and, as a result, rejecting
it. So, the expecting value of the formula Bip is 3

4 rater than 1
4 just as it was fixed by the function

[.]Mρ . For this reason, the adaptation of mv µK to express properties concerning graded beliefs is
not straightforward.

4 Graded modalities’ formalism

The last framework is called an Epistemic Logic of Graded Modalities (Gr(S5)) and is particulary
interesting since it is elaborated in modal epistemic logic itself. The idea of graded operators for
modal logic was introduced in 1970s [12, 13, 16] and further studied in 1980s [11, 4, 10]. In the
nineties, the epistemic interpretation of graded operators was developed by Wiebe van der Hoek
and John Jules Meyer [24–26, 20].

In the formalism we can express that an agent accepts a thesis α although it is conscious of
some exceptions to α. Thus the logic with graded modalities allows to deal with types of knowledge
10 Since the epistemic relation ∼i is reflexive an agent i knows a thesis T at a state s if T is true at s.

In consequence, an agent knows only true facts which follow from true premises. That is, non of the
premises can be disregarded.



that are less absolute than in traditional approach. In the standard modal epistemic logic there
are considered two kinds of formulas Kiα - α is true in all states accessible via epistemic relation
and Miα (also noted as Kiα) - α is true in some state accessible via epistemic relation. Thereby,
an agent i knows α if α holds in all states it considers as possible. However, in some situations
it might be desirable to be able to express that the agent has more confidence in α than in ¬α.
The logic with graded modalities provides a solution to this problem by adding quantitative
modalities Md and Kd (d ∈ N) enabling to describe the agent’s point of view in a more precise
manner. Intuitively, we understand the formula Md

i α as follows: “agent i accepts α iff there are
more than d accessible states verifying α”. In the same spirit, dual formula Kd

i α is true iff at
most d accessible states refute α. This logic can be employed in multi-agent systems where there
are different sources to judge the same proposition and agents have to make a decision on the basis
of them. It may happen that results obtained in some sources are false because of faulty sensors
or bad calculations. In such cases it is understandable that some data could be refused.

Now, we present formal syntax and semantics of Gr(S5). The set of all well-formed expres-
sions of the logic is given by the following Backus-Nauer Form (BNF):

α ::= p|¬α|α ∨ α|Md
i α

where p is a propositional variable, d is a natural number and i ∈ Agt = {1, . . . , n} is a name of
an agent.

The formulas are interpreted in Kripke structure M = (S, v,R1, . . . , Rn), where S is a set
of worlds (or states), v : S → {1,0}V0 a truth assignment (V0 is a set of propositions) and Ri

(i = 1, . . . , n) a binary relation on S. It is assumed that Ri is an equivalence relation.
For a Kripke structure M the truth of a formula α at s ∈ S is defined inductively as follows:

– M, s |= p iff v(s)(p) = 1 for any p ∈ V0,
– M, s |= ¬α iff not M, s |= α,
– M, s |= α ∨ β iff M, s |= α or M, s |= β,
– M, s |= Md

i α iff |{s′ ∈ S|(s, s′) ∈ Ri and M, s′ |= α}| > d (d ∈ N).

Here |X| stands for the cardinality of the set X ⊆ S. A formula Kd
i α is an abbreviation for

¬Md
i ¬α. We use also M !di α where M !0i α ⇔ K0

i ¬α, M !di α ⇔ Md−1
i α ∧ ¬Md

i α, if d > 0. From the
definition above, it is clear that M !di means “exactly d”.

The system GR(S5) has two inference rules Modus Ponens and Necessitation:

α, α → β

β
,

α

K0α

and the following schemes of axioms (for each d, d′ ∈ N and i ∈ Agt):

A0 all propositional tautologies
A1 K0

i (α → β) → (Kd
i α → Kd

i β)
A2 Kd

i α → Kd+1
i α

A3 K0
i ¬(α ∧ β) → ((M !di α ∧M !d

′
i β) → M !d+d′

i (α ∨ β))
A4 ¬Kd

i α → K0
i ¬Kd

i α
A5 K0

i α → α

The system with rules Modus Ponens and Necessitation and axioms A0-A3 is the graded modal
analogue of the basic modal system K. The axiom A1 is a kind of generalized K-axiom, A2 and
A3 describe ways to decrease and increase grades in the possibility operators, respectively. A4
is an analogue of the negative introspection axioms of the modal system S5. A5 expresses that
known facts are true what corresponds to T-axiom.

Let us now give some comments. First of all, as we noted above the logic GR(S5) is an
equivalent of modal S5 system. Thus its axioms are much more intuitive than those of probabilistic
modal logic described in section 2.2 and is an elegant tool to deal with various shades of uncertainty.
Moreover, due to its similarity to the standard approach it is relatively easy to transform the



epistemic logic with graded modalities into a doxastic one. It is sufficient to loosen the assumption
that the accessibility relation is an equivalence relation and to require that it is serial, transitive,
and euclidean. In consequence, an axiomatic system is changed what is precisely presented in our
paper [3]. In this manner, that approach can be applied not only to express knowledge but can
also be nicely adapted to reason about beliefs.

The other advantage of this formalism is that degrees of knowledge are employed directly in
the language. As a result, unlike multi-valued approach specification of properties which require
nesting modalities with different grades is possible. So, we can formally express that an agent 1
considers at most 10 states which refute that an agent 2 leans towards a thesis (i.e. considers at
most 2 states which refute a thesis α): K10

1 K2
2α. Note that, the higher the degree of K is, the less

certain the knowledge is.
Further, to evaluate a formula Kd

i α we consider the epistemic relation which shows in how
many accessible states α holds. Observe that they assume here that all those states are equally
likely. However, there are situations in which we would like to differ their chances like in the section
2.2 when Kasia and Magda played cards. You can also think that there is a little likelihood of an
earthquake somewhere in the center of the Europe while it is highly probable in San Francisco.
Formally it could be reflected in values assigned to every couple (s, s′) ∈ Ri (i ∈ Agt). Unfortu-
nately, in Gr(S5) it is not taken into consideration. Therefore, we cannot express that an agent
perceives some states as more probable than the other ones.

Finally, let us assume that an agent 1 is aware of exactly 10 possible situations in which a thesis
α holds, i.e. M !101 α. Notice that in such a case it is still not clear whether the agent more believes
α than ¬α since we do not know how many states he considers as his epistemic alternative. Say
that for two states in which α is false, we suppose that the agent accepts the thesis. On the other
hand, if there are one hundred states at which α does not hold, the agent should refuse the thesis.
Indeed, along with the growth of accessible states a degree of uncertainty about the current state
rises. However, it is reflected neither in the formula M !101 α nor in the formula M10

1 α. To complete
the information we can consider the conjunction M !101 α∧M !1001 ¬α which says in how many states
the thesis is true and in how many false. Actually, it does not improve the situation because it is
not possible to compare directly in the language the numbers of states in which the thesis holds
with the number of all accessible states. This means that there is no way to indicate the ratio of
the number of states which are considered by the agent and verify a thesis to the number of all
states which are considered by this agent. It could be done only in a metalanguage.

5 Conclusions

In the paper we give a succinct presentation of selected formalisms in which it is possible to express
different shades of uncertainty by means of gradation. We demonstrate and compare probabilistic,
multi-valued and graded modalities’ approaches. In our future work, we would like to apply them
to reasoning about a process of convincing.

The probabilistic approach is one of the widely analyzed in the literature. In the proposed
systems the notion of certainty is often reduced directly to mathematical probability. As a result,
their basic assumptions are distant from practice related to beliefs of individuals. So, it is difficult
to adapt them in many real-life scenarios.

The multi-valued logics seem to be well suited formalisms for reasoning about degrees of knowl-
edge or beliefs. However, they have a serious gap which results from a fact that the degrees are
”hidden” in the semantics and not explored in the syntax of the language. In consequence, speci-
fication of properties which requires mixing beliefs’ grades of different agents is not possible.

The graded modalities’ formalism is analogue of the system for knowledge which is most popular
among computer scientists and AI researches (i.e. S5 modal system). Thereby, it has more intuitive
axiomatization and nicer technical properties than the other proposals discussed. Furthermore, it
allows for nesting epistemic operators with different grades of beliefs. That is why, we find it the
most appropriate for our reasons.

The adaptation of the epistemic logic with graded modalities to formalizing the process of
persuasion is presented in [3] where the sound and complete deductive system for reasoning about



graded beliefs and their change is given. In our earlier work [2] we analyzed the possibility of
application of multi-valued logics to a process of convincing. However, during our research we
found out that the graded modalities’ representation are interesting and worth considering as
well, sometimes even more adequate and expressible. This paper is a summary of our study in this
field.
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