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ABSTRACT 
 One of the problems commonly encountered in bioavailability studies is that the data set may 
contain some extremely large or small (i.e. outlying) observations. These observations may have an 
influence on the conclusion of the bioequivalence.  
 This contribution is structured into three parts: 

- the first section presents some new Exploratory Data Analysis (EDA) techniques, such 
Principal Component Analysis (PCA) and Projection Pursuit (PP), for detection of possible 
outlying subjects in designs of bioavailability studies; 

- in the second section, a discordance test for one or more outlying observations for an 
individual subject, based on sample Kurtosis, is discussed; 

- in section three, the AUC (Area Under the Curve) data (both raw data and log-transformed 
data) of the two erythromycin formulation in Clayton and Leslie’s study are used to illustrate 
the procedures presented above. 

Although computer intensive, the above EDA techniques are efficient in detecting outlying 
subjects and observations. 

 
 
INTRODUCTION 
 
FUNDAMENTAL BIOEQUIVALENCE ASSUMPTION 
When two drug products are equivalent in the rate and extent to which the active drug ingredient or 
therapeutic moiety is absorbed and becomes available at the site of drug action, it is assumed that they 
will be therapeutically equivalent. 
 
THE DEFINITION OF OUTLYING OBSERVATIONS 
One of the problems commonly encountered in bioavailability studies is that the data set may contain 
some extremely large or small (i.e., outlying) observations. These observations may have an influence 
on the conclusion of bioequivalence. Basically, there are three different kinds of outliers: 

1. Unexpected observations in the blood or plasma concentration-time curve 
2. Extremely large or small observations within a given formulation 
3. Unusual subjects who exhibit extremely high or low bioavailability relative to the reference 

formulation. 
For the first kind of outlier, Chow and Liu (2000) indicated that unexpected observations in the plasma 
concentration-time curve usually have little effect on calculation of AUC and, consequently, have little 
effect on the comparison of bioavailability.  
 
EXPLORATORY DATA ANALYSIS TECHNICS 
 
ANDREWS CURVES 
Andrews curves [Andrews, 1972] were developed as a method for visualizing multi-dimensional data 
by mapping each observation onto a function. This function is defined as 

where the range of t is given by -n < t < n. Each observation is projected onto a set of orthogonal basis 
functions represented by sines and cosines and then plotted. Thus, each sample point is now 
represented by a curve. 
It has been shown that because of the mathematical properties of the trigonometric functions, the 
Andrews curves preserve means, distance (up to a constant) and variances. One consequence of this is 
that Andrews curves showing functions close together suggest that the corresponding data points will 
also be close together. Thus, one use of Andrews curves is to look for clustering of the data points. 



Andrews curves are dependent on the order of the variables. Lower frequency terms exert more 
influence on the shape of the curves, so re-ordering the variables and viewing the resulting plot might 
provide insights about the data. By lower frequency terms, we mean those that are first in the sum 
given in the above equation.  
It has been suggest that the data be rescaled so they are centered at the origin and have covariance 
equal to the identity matrix. Andrews curves can be extended by using orthogonal bases other than 
sines and cosines (for example Legendre polynomials and Chebychev polynomials). 
 
PRINCIPAL COMPONENTS ANALYSIS 
The Andrews curves are attempts to visualize all of the data points and all of the dimensions at once; 
the curves accomplish this by mapping a data point to a curve. Another option is to tackle the problem 
of visualizing multi-dimensional data by reducing the data to a smaller dimension via a suitable 
projection. These methods reduce the data to 1-D or 2-D by projecting onto a line or a plane and then 
displaying each point in some suitable graphic, such as a scatterplot. Once the data are reduced to 
something that can be easily viewed, then exploring the data for patterns or interesting structure is 
possible. 
One well-known method for reducing dimensionality is principal component analysis (PCA) 
[Enachescu D, 2003]. This method uses the eigenvector decomposition of the covariance (or the 
correlation) matrix. The data are then projected onto the eigenvector corresponding to the maximum 
eigenvalue (sometimes known as the first principal axis) to reduce the data to one dimension. In this 
case, the eigenvector is one that follows the direction of the maximum variation in the data. Therefore, 
if we project onto the first principal axis, then we will be using the direction that accounts for the 
maximum amount of variation using only one dimension.  
We could project onto two dimensions using the eigenvectors corresponding to the largest and second 
largest eigenvalues. This would project onto the plane (named the principal factorial plane) spanned by 
these eigenvectors. As we see shortly, PCA can be thought of in terms of projection pursuit, where the 
interesting structure is the variance of the projected data. 
For normally distributed observations projected onto the principal factorial plane, the square distance to 

0 is a weighted sum of d independent  variables. Its expectation is  and its variance is 

. Observations with a square distance greater than 
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outliers.[Enachescu and Enachescu, 2000] 
 
PROJECTION PURSUIT 
There are an infinite number of planes that we can use to reduce the dimensionality of our data. As we 
just mentioned, the first two principal axes in PCA span one such plane, providing a projection such 
that the variation in the projected data is maximized over all possible 2-D projections. However, this 
might not be the best plane for highlighting interesting and informative structure in the data. Structure 
is defined to be departure from normality and includes such things as clusters, linear structures, holes, 
outliers, etc. Thus, the objective is to find a projection plane that provides a 2-D view of our data such 
that the structure (or departure from normality) is maximized over all possible 2-D projections. 
In the literature, the projection pursuit is described as a way of searching for and exploring nonlinear 
structure in multi-dimensional data by examining many 2-D projections. The idea is that 2-D 
orthogonal projections of the data should reveal structure that is in the original data. The projection 
pursuit technique can also be used to obtain 1-D projections, but we look only at the 2-D case. In our 
presentation of projection pursuit exploratory data analysis, we follow the method of Posse [1995a, 
1995b]. 
Projection pursuit exploratory data analysis (PPEDA) is accomplished by visiting many projections to 
find an interesting one, where interesting is measured by an index. In most cases, our interest is in non-
normality, so the projection pursuit index usually measures the departure from normality. The index we 
use is known as the chi-square index. 
PPEDA consists of two parts: 
1) a projection pursuit index that measures the degree of the structure (or departure from normality), 
and 
2) a method for finding the projection that yields the highest value for the index. 
Posse [1995a, 1995b] uses a random search to locate the global optimum of the projection index and 
combines it with the structure removal of Freidman (1987) to get a sequence of interesting 2-D 



projections. Each projection found shows a structure that is less important (in terms of the projection 
index) than the previous one.  
 
Projection Pursuit Index 
Posse developed an index based on the chi-square. The plane is first divided into 48 regions or boxes 

 that are distributed in rings. See Figure for an illustration of how the plane is partitioned. All regions 
have the same angular width of 45 degrees and the inner regions have the same radial width of 

. This choice for the radial width provides regions with approximately the same probability 
for the standard bivariate normal distribution. The regions are constructed in this way to account for the 
radial symmetry of the bivariate normal distribution. 
Posse provides the population version of the projection index. We present only the empirical version 
here, because that is the one that must be implemented on the computer. The projection index is given 
by 

where  
X is an n x d matrix, where each row  corresponds to a d-dimensional observation and n is the 
sample size. Z is the studentized version (i.e. 0 mean and 1 variance) of X. 

 is the 1 x d sample mean: 

 is the sample covariance matrix: 

 are orthonormal d-dimensional vectors that span the projection plane. 
( ,P α β)  is the projection plane spanned by  and   

 are the studentized observations projected onto the vectors  and  

 denotes the plane where the index is maximum. 
 denotes the chi-square projection index evaluated using the data projected onto the plane 

spanned by and   
 is the standard bivariate normal density. 
 is the probability evaluated over the k-th region using the standard bivariate normal, 

 is a box in the projection plane,  is the indicator function for region  
 is the angle by which the data are rotated in the plane before being assigned 

to regions   
 and  are given by 

 
The chi-square projection index is not affected by the presence of outliers. It is sensitive to distributions 
that have a hole in the core, and it will also yield projections that contain clusters. The chi-square 
projection pursuit index is fast and easy to compute, making it appropriate for large sample sizes.  
Using a similar argument as in the PCA case, for normally distributed observations projected onto the 

 plane, the points which fall outside circle 2 can be considered as outlying values. ( ,P α β)
 
 
 



Figure 1 The layout of the regions BBk for the chi-square projection index 
 
DISCORDANCY TESTS OF ONE OR MORE OUTLIERS (IRRESPECTIVE OF THEIR 
DIRECTIONS) IN A NORMAL SAMPLE WITH UNKNOWN MEAN AND VARIANCE  
 
Test statistic [Barnett and Lewis, 1994]: 

T = sample kurtosis =  

T is the locally best-unbiased invariant test of given size against a location-slippage alternative in 
which k of the n observations arises from separate normal distributions 

, where a  differ from zero but are otherwise arbitrary, 
provided that the contamination proportion k/n under the alternative hypothesis is less than 0.21. T is 
also the locally best invariant test of given size against a dispersion-slippage alternative in which k of 
the observations arises from separate normal distributions , 

 irrespective of the proportion k/n. Its power is nearly as good as that of two-sided 
discordancy test of an extreme outlier in a normal sample with unknown mean and variance against 
slippage in location for a single observation by medium or large amounts. Against slippage in location 
by two observations it is superior to the above mentioned test in power, greatly so when the sample size 
is less than, say, 20. 
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T has the advantage of being robust against possible masking effects. It is suitable for consecutive use 
in the possible presence of more than one outlier. 
 
CONSECUTIVE ('RECURSIVE') TEST OF UP TO K OUTLIERS (IRRESPECTIVE OF 
DIRECTIONS) IN A NORMAL SAMPLE WITH  AND UNKNOWN 
 
Test procedure: Suppose T is a test statistic for a (two-sided) discordancy test of a single outlier in a 
normal sample. Let (for prescribed k) be the observations yielding the maximum value 
of T in subsamples  where  is the set of observations excluding 

. (That is,  produces the maximum value of T in the complete sample; produces 
the next largest value of T calculated for the sample of n - 1 observations on omission of , and so on.) 
Suppose the successive values of T so obtained are . We determine  where 

 for  and 

 
Then a level-  test operates as follows. If  then  are discordant. Otherwise we 
proceed by examining  for  until , at which stage  
are adjudged discordant at level  (If  for all , we conclude, of course, that 
there are no discordant outliers). 
Properties of test: This procedure embody the estimation of the number of contaminants in the sample. 



The policy of examining samples of successively reduced size in reverse order protects against masking 
effects in the more usual forms of consecutive test. The inconvenience is having to recalculate 
summary statistics at each of the k stages.  
 
APPLICATION AND COMMENTS 
 
We will use AUC data (both raw data and log-transformed data) of the two erythromycin formulations 
in Clayton and Leslie’s study (see Chow and Liu, 2000) to illustrate the above presented methodology. 
Note that this data set has been analyzed by many researchers because of its possible violation of the 
normality assumption in raw data and the existence of potential outliers. 
 

Table 1 AUCs for Two Erythomycin Formulations 

 
From a visual inspection of the table it can be seen that, in raw data, subjects 2 and 14 are possible 
upper outliers (i.e. extremly large observations) as subject 7 is a possible lower outlier. 
Using the EDA technics to represent the data we obtain the following plots: 



 
 
 

 
 
 
 
 



 

 
 
 
 
 
 



 

 
 
 
 
 
 
 



 
 

 
 
 
 
 
 
 



The conclusion is obvious: all EDA technics confirm that subject 7 for raw and log-transformed data 
has outlying values. 
 
In order to asses bioequivalence the U.S. Food and Drug Administration –FDA- recommend the 
following 2x2 crossover design: 
 
Yijk = µ + Sik + F(j,k) + C(j-1,k) + Pj + eijk, 
 
where i = 1, 2, …, nk; j = 1, 2; k = 1, 2 and the following normality assumptions: 

1. {Sik} are i.i.d. normal with mean 0 and variance 2
sσ . 

2. {eijk} are i.i.d. normal with mean 0 and variance . 2
eσ

3. {Sik} and {eijk} are mutually independent. (1.2) 

The validation of the above assumptions has an influence on the assessement of bioequivalence. 
Consider the intrasubject residual for subject i within sequence k during period j, denoted by  and 

defined as the difference between the observed reponse Y
îjke

ijk and its predicted value . îjkY
Similarly, the intersubject residuals can be used to evaluate the normality assumption imposed on the 

intersubject variability of Sik. The intersubject residuals, denoted by , are given as:  ikS
^

ikS
^

= Yi.k - kY .. , i = 1, 2, …, nk, k = 1, 2. 
Table 2 provides studentized intrasubject and intersubject residuals of the raw and log-transformed 
AUC data. 
 
Table 2 Intrasubject and Intersubject Residuals of raw and log-transformed AUC for Clayton and 
Leslie’s Study at the first Period 

Sbj Seq ê  Ŝ  
ê  

for log data
Ŝ  

for log data 
1 CD -0,757 -0,471 -0,143 -0,304 
2 CD 2,733 5,249 0,547 1,44 
3 CD -0,012 -5,421 -0,279 -1,745 
4 CD 0,648 -4,961 0,204 -1,202 
5 CD 0,258 6,359 0,182 1,682 
6 CD -0,382 -4,161 -0,321 -1,092 
7 CD -4,982 4,919 -1,019 0,187 
8 CD 1,133 1,909 0,325 0,965 
9 CD 1,358 -3,421 0,504 -0,538 
10 DC 0,499 -2,064 0,126 -0,316 
11 DC -1,741 6,736 -0,257 1,17 
12 DC -0,946 -5,514 -0,334 -1,42 
13 DC 0,984 1,686 0,139 0,433 
14 DC -1,796 1,066 -0,35 0,318 
15 DC 1,229 -0,164 0,238 0,041 
16 DC 0,739 -2,984 0,227 -0,609 
17 DC 0,094 3,106 -0,023 0,708 
18 DC 0,939 -1,864 0,234 -0,326 

 
Applying the consecutive test of up to k= 3, 2, 1 outliers in a normal sample of size n = 18 with the 
significance level  for the data in Table 2 we obtain the following results 5%α=
 
 



ê  

k Outlier T 3,T α  2,T α  1,T α  

1 7 5.50 4.77 4.57 4.15 
2 2 2.84 3.84 3.67  
3 14 2.34 3.50   

 

Ŝ  

k Outlier T 3,T α  2,T α  1,T α  

1 11 1.79 4.77 4.57 4.15 
2 5 1.87 3.84 3.67  
3 12 1.89 3.50   

 
ê  for log-transformed data 

k Outlier T 3,T α  2,T α  1,T α  

1 7 3.84 4.77 4.57 4.15 
2 2 1.82 3.84 3.67  
3 14 1.72 3.50   

 

Ŝ  for log-transformed data 

k Outlier T 3,T α  2,T α  1,T α  

1 3 2.10 4.77 4.57 4.15 
2 2 2.07 3.84 3.67  
3 4 2.27 3.50   

 
It can be seen that subject 7 is the single outlier and only for the raw data. 
The assumptions (1.2) are examined using the Shapiro-Wilk test for normality and either Pearson’s 
correlation coefficient or Spearman’s rank correlation coefficient. Table 3 summarize the results 
obtained with and without subject 7. 
 
Table 3 Summary of test results for assumptions (1.2) 

 
 
As a result, if subject 7 is excluded, assumptions (1.2) hold for the raw data too. 
Consequently, inclusion and exclusion of the possible outlying subject has a tremendous influence on 
assessment of the bioequivalence. Because one cannot determine whether the apparently 
nonconforming data result from laboratory error, data transcription, or other causes unrelated to 
bioequivalence FDA are against data removal. 
FDA guidance on average bioequivalence recommend that logarithmic transformation be applied to the 
parmacokinetic responses AUC and Cmax but not encourage firms to test for normality of data 
distribution after log-transformation. 
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