
Non-Archimedean Probabilities and

Non-Archimedean Bayesian Networks

Andrew Schumann

June 8, 2007

In the paper we consider non-Archimedean fuzziness and probabilities. The
idea of non-Archimedean multiple-validities is that (1) the set of values for the
vagueness and probability is uncountable infinite and (2) this set is not well-
ordered. For the first time the non-Archimedean logical multiple-validity was
proposed in [13], [14].

We propose non-Archimedean fuzziness that is defined on an infinite-order
class of fuzzy subsets in the framework of infinite-order (ω-order) vagueness.
This approach allows to set an ω-order fuzzy logic such that its well-formed
formulas have truth values in an interval [0, 1] of hyperreal or hyperrational
numbers. On the base of non-Archimedean fuzzy logic we can build also non-
Archimedean probability logic. In this paper I propose to define probabilities
an algebra of fuzzy subsets. These probabilities are said to be fuzzy ones.
Their main originality consists in that some Bayes’ formulas do not hold in the
general case. In the framework of ω-order vagueness we can construct infinitely
hierarchical Bayesian networks. For instance, we can consider i-order variables
of Bayesian network as i-tuples of first-order variables and ω-order variables as
infinite tuples of first-order variables. Also, for the first time we propose to use
infinite-order logical constructions for setting fuzziness and probabilities.

Let us remember that Archimedes’ axiom affirms: for any positive real or
rational number ε, there exists a positive integer n such that ε ≥ 1

n or n · ε ≥ 1.
The field that satisfies all properties of R without Archimedes’ axiom is

called the field of hyperreal numbers and it is denoted by ∗R. The field that
satisfies all properties of Q without Archimedes’ axiom is called the field of
hyperrational numbers and it is denoted by ∗Q. By definition of field, if ε ∈ R
(resp. ε ∈ Q), then 1/ε ∈ R (resp. 1/ε ∈ Q). Therefore ∗R and ∗Q contain
simultaneously infinitesimals and infinitely large integers: for an infinitesimal ε,
we have N = 1

ε , where N is an infinitely large integer.
In the standard way, probabilities are defined on an algebra of subsets. Re-

call that an algebra A of subsets A ⊂ X consists of the following: (1) union,
intersection, and difference of two subsets of X; (2) ∅ and X. Then a finitely
additive probability measure is a nonnegative set function P(·) defined for sets
A ∈ A that satisfies the following properties:

1. P(A) ≥ 0 for all A ∈ A,

2. P(X) = 1 and P(∅) = 0,

3. if A ∈ A and B ∈ A are disjoint, then P(A ∪ B) = P(A) + P(B). In
particular P(¬A) = 1−P(A) for all A ∈ A.
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It is possible also to set probabilities on an algebra FV (X) of fuzzy subsets
A ⊂ X that consists of the following: (1) union, intersection, and difference of
two fuzzy subsets of X; (2) ∅ and X. In this case a finitely additive probability
measure is a nonnegative set function P(·) defined for sets A ∈ FV (X) that
runs the set V and satisfies the following properties:

1. P(A) ≥ 0 for all A ∈ FV (X),

2. P(X) = 1 and P(∅) = 0,

3. if A ∈ FV (X) and B ∈ FV (X) are disjoint, then P(A∪B) = P(A)+P(B).

4. P(¬A) = 1−P(A) for all A ∈ FV (X),

where 1 is the largest member of V and 0 is the least member of V .
This probability measure is called fuzzy probability. The main originality

of fuzzy probabilities is that conditions 3, 4 are independent. As a result, in
a probability space 〈X,FV (X),P〉 some Bayes’ formulas do not hold in the
general case.

A probability space 〈X,FQV
∞ (X),P〉 will say to be non-Archimedean. As

we see it is a particular case of fuzzy probability space and non-Archimedean
probability measure is a particular case of fuzzy probabilities.

A non-Archimedean Bayesian network N∞ consists of the following

• V is a set included variables vi
1, . . . , vi

N of various order i ∈ ω and variables
v∞1 , . . . , v∞N of ω-order.

• A is a union of (1) a set of i-order arc towers (i ∈ ω), which together with
V constitutes an i-order dag Gi over variables v1

1 , . . . , v1
N at the first level,

over variables vi
1, . . . , vi

N at the i-th level, etc., and (2) a set of ω-order
arc towers, which together with V constitutes an ω-order dag G∞ over
variables v∞1 , . . . , v∞N .

• P is a set of i-order conditional probabilities Pi(vi
j |πvi

j
) of the all i-order

variables vi
j given their respective i-order parents πvi

j
(i ∈ ω) and of ω-

order conditional probabilities P∞(v∞j |πv∞j
) of the all ω-order variables

v∞j given their respective ω-order parents πv∞j
.

Also we have a multihierarchical (more precisely, infinitely hierarchical) Bayesian
network. For instance, we can consider i-order variables as i-tuples of first-order
variables and ω-order variables as infinite tuples of first-order variables.

The main idea of non-Archimedean Bayesian networks is that we can define
multihierarchical structures and consider joint distributions for different levels
i = 1, 2, . . . Principles of setting an infinite hierarchy of Bayesian networks
depend on practical aims.

Non-Archimedean Bayesian networks can be also regarded on the set of
formulas of non-Archimedean probability logic.

Non-Archimedean fuzziness and non-Archimedean probabilities were con-
sidered as infinite-order ones, e.g. we constructed an appropriate ω-order fuzzy
and probability logic that allows to get a non-Archimedean fuzzy class the-
ory and non-Archimedean probability theory. On the base of non-Archimedean
probabilities we can define also non-Archimedean Bayesian networks and other
practical applications.
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