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Some theorems

Theorem (Kamp,1968)

Propositional TL(Since, Until) is expressively equivalent to
monadic FOL over complete linear order.

Theorem
TL and TS-FO have the same expressive power in the propositional
case.
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Basic notions

Definition
A database schema S is a finite set of relation names, where each
relation name has an associated arity.

Definition
A temporal database over a database schemata S is a non-empty
finite sequence I = I1, I2, I3, ..., In (n >= 1) of instances of S .
Every jε{1, ..., n} is called a state of I .

Definition
Temporal database I with a two-sorted relational structure is called
the timestamp representation of I .
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The language of TS − FO

TS-FO
TS − FO - a query language of first-order logic used on the
timestamp representation of a temporal database.

Example

Let S be relation such that S(x , t) is interpreted as x is a patient
of a hospital in time t.

The formula

(∃t1) (∃t2) (∃t3) (t1 < t2 < t3 ∧ S(x , t1)∧ ∼ S(x , t2) ∧ S(x , t3))

is interpreted as follow: x was a patient of a hospital at least
twice.
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Extended temporal logic - ETL

The syntax of ETL
The syntax of ETL is over some database schema S is obtained by
using the formation rules for standing first-order logic over S
together with additional formation rule:

R: Let L be are regular language over the finite alphabet
(v1, v2, ..., vp), let (ϕ1, ϕ2, ..., ϕp) be formulas.

Then

L+(ϕ1, ϕ2, ..., ϕp)

and

L−(ϕ1, ϕ2, ..., ϕp)

are formulas too.
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Extended temporal logic - ETL

The semantics of ETL

Let I = I1, I2, I3, ..., In (n >= 1) be a temporal database over
schema S . Let ϕ[x ] be formula of ETL with free variables
x = (x1, x2, ..., xk). Let a = (a1, a2, ..., ak) be data elements in the
active domain I , and let jε{1, ..., n} be a state. The truth of ϕ[a]
in database I in state j (I , j |= ϕ[a]) is defined as follows:

If ϕ is atomic formula, or ϕ is a one of a form:
∼ φ, φ ∧ ψ,∃xφ(x),∀xφ(x), then definition is as usual.
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Extended temporal logic - ETL

The semantics ETL...

If φ is of the form L+(ϕ1, ϕ2, ..., ϕp), where L is a regular over
the alphabet (v1, v2, ..., vp), then

I , j |= ϕ[a], if there exists a word w = vwj ...vwn of length
(n − j + 1) in L such that:

I , j |= ϕwj [a] and I , j + 1 |= ϕwj+1 [a] and ... and I , n |= ϕwn [a].

If φ is of the form L−(ϕ1, ϕ2, ..., ϕp), then

I , j |= ϕ[a], if there exists a word w = vwj ...vw1 of length j in
L such that :

I , j |= ϕwj [a] and I , j − 1 |= ϕwj−1 [a] and ... and I , 1 |= ϕw1 [a].

Dariusz Surowik Query temporal databases First-Oder Logic vs Temporal logic



Extended temporal logic - ETL

The semantics ETL...

If φ is of the form L+(ϕ1, ϕ2, ..., ϕp), where L is a regular over
the alphabet (v1, v2, ..., vp), then

I , j |= ϕ[a], if there exists a word w = vwj ...vwn of length
(n − j + 1) in L such that:

I , j |= ϕwj [a] and I , j + 1 |= ϕwj+1 [a] and ... and I , n |= ϕwn [a].

If φ is of the form L−(ϕ1, ϕ2, ..., ϕp), then

I , j |= ϕ[a], if there exists a word w = vwj ...vw1 of length j in
L such that :

I , j |= ϕwj [a] and I , j − 1 |= ϕwj−1 [a] and ... and I , 1 |= ϕw1 [a].

Dariusz Surowik Query temporal databases First-Oder Logic vs Temporal logic



Extended temporal logic - ETL

The semantics ETL...

If φ is of the form L+(ϕ1, ϕ2, ..., ϕp), where L is a regular over
the alphabet (v1, v2, ..., vp), then

I , j |= ϕ[a], if there exists a word w = vwj ...vwn of length
(n − j + 1) in L such that:

I , j |= ϕwj [a] and I , j + 1 |= ϕwj+1 [a] and ... and I , n |= ϕwn [a].

If φ is of the form L−(ϕ1, ϕ2, ..., ϕp), then

I , j |= ϕ[a], if there exists a word w = vwj ...vw1 of length j in
L such that :

I , j |= ϕwj [a] and I , j − 1 |= ϕwj−1 [a] and ... and I , 1 |= ϕw1 [a].

Dariusz Surowik Query temporal databases First-Oder Logic vs Temporal logic



Examples

Example 1

The formula L+1 (true, ϕ) of ETL, where L1 is a language a∗ba∗

over the alphabet (a, b) is true in time j iff there is some time in
the future of j (including j itself) where ϕ is true.

n=10, j=3

aaaaabaa

aabaaaaa

aaaabaaa

Example 2

The formula L−1 (true, ϕ), where L1 is a language a∗ba∗ over the
alphabet (a, b) is true in j iff there is some time in the past of j
(including j itself) where ϕ is true.
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Examples

Example 3
x was a patient of a hospital at least twice.

∼ S(x) ∧ L−1 (S(x)) ∧ L+1 (S(x))
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STL operators and ETL

Since i Until

ϕ since ψ ≡ L−4 (φ, ψ, true)
ϕ until ψ ≡ L+4 (φ, ψ, true),

where L4 is the language a∗bc∗ over the alphabet (a, b, c)

Until,n=10, j=3

aaaaabcc

aabccccc

aaaabccc

Next i Previous

next ϕ ≡ L+5 (true, φ)
previous ϕ ≡ L−5 (true, φ)

where L5 is the language aba∗ over the alphabet (a, b)
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Boolean queries in TBD

Boolean query

A Boolean query on a class of temporal databases over some
fixed schema is a mapping assigning true or false to each
database in the class.

Every TS-FO sentence defines a Boolean query in the obvious
way.

Every ETL sentence ϕ defines a Boolean query Q as follows:
For a temporal database I , Q(I ) = true iff ϕ is true in I at
every state.
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Expressive power - TS-FO vs ETL

Lemma 1
There are some queries expressible in ETL and not expressible in
TS-FO.

Example
”The length of the temporal database is even” is expressible
in ETL (L+3 (true), where L3 is a language (aa)∗ ) and it is not
expressible in TS-FO (since parity of a linear order is well-known
not to be first-order definable).
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Constant communication complexity

Definition
Let P be a binary predicate on sets of sets of data elements. We
say that P has constant communication complexity if there exist
natural numbers k and r and communication protocol between two
parties (denoted by A and B) that, for each finite set D of data
elements, can evaluate P(X ,Y ) on any sets X and Y of
non-empty subsets od D as follows:

1 A gets X and B gets Y . Both parties know D
2 A sends a message a1 to B, and B replies with a message b1
to A.

3 A again sends a message a2 to B, and B again replies with a
message b2

4 After r message exchanges, both A and B have enough
information to evaluate P(X ,Y ) correctly.
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Constant communication complexity

Example

Let P(X ,Y ) be true if the maximal cardinality of an element
in X is larger than the maximal cardinality of an element in Y .

P has constant communication complexity with k = 1 and
r = 1.

A sends to B an element of X with maximal cardinality, and
B replies with an analogous element for Y .

Both A and B can then evaluate P(X ,Y ) by comparison of
cardinalities.

Lemma 2
The equality, inclusion and disjointness predicates do not have
constant communication complexity.
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Split Databases

Definition
A temporal database is called split if there is exactly one state
whose instance is empty. (This state is called the middle state of
the split database.

Remark
If I = I1, I2, ..., In is a split database with middle state m then its
right part Im, ..., In is denoted by Iright and its left part I1, ..., Im by
Ileft .
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Ileft .
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The Language Split-ETL

The Language Split-ETL
The Language Split-ETL is a ETL language, whose semantics is
only defined on split databases.

Remark
Syntactically, Split-ETL differs from ETL only in that each
temporal operator L+(L−) is split into a ”left” and a ”right”
version L+left and L

+
right

(
L−left and L

−
right

)
.
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Semantics of the split temporal operators

Definition
Let I be a split database of length n with middle state m.
For each state j of I we define:

left(j) :=

{
j if j ¬ m
m if j  m

and

right(j) :=

{
1 if j ¬ m
j −m + 1 if j  m
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Semantics of the split temporal operators

Semantics of the split temporal operators
Semantics of the split temporal operators is defined as follows:

I , j |= L−leftθ if Ileft , left(j) |= L−θ
I , j |= L+leftθ if Ileft , left(j) |= L+θ
I , j |= L−rightθ if Iright , right(j) |= L−θ
I , j |= L+rightθ if Iright , right(j) |= L+θ
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Expressive power

Lemma 3
On split databases, each ETL formula is equivalent to a split-ETL
formula.
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Inexpressibility

Boollean query QP
Let P be a binary predicate on sets of sets. Let us consider the
Bollean query QP on split databases defined as follows. For a split
database I = I1, ..., In with middle state m
QP(I ) = true if P(L,R) holds, where
L = {Ij : 1 ¬ j < m} and R = {Ij : m < j ¬ n}
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Inexpressibility

Lemma 4
If QP is expressible in ETL, then P has constant communication
complexity.

Theorem
Over schemas containing at least one relation of non-zero arity,
there are queries expressible in TS-FO but not in ETL.

Proof (Sketch)

Query Q :
Are there two different states with the same instance?
is expressible in TS-FO but not in ETL.
Query Q is expressible in TS-FO:

∃t∃t ′(t 6= t ′ ∧ (∀x)(S(x , t)↔ S(x , t ′)))

Dariusz Surowik Query temporal databases First-Oder Logic vs Temporal logic



Inexpressibility

Lemma 4
If QP is expressible in ETL, then P has constant communication
complexity.

Theorem
Over schemas containing at least one relation of non-zero arity,
there are queries expressible in TS-FO but not in ETL.

Proof (Sketch)

Query Q :
Are there two different states with the same instance?
is expressible in TS-FO but not in ETL.
Query Q is expressible in TS-FO:

∃t∃t ′(t 6= t ′ ∧ (∀x)(S(x , t)↔ S(x , t ′)))

Dariusz Surowik Query temporal databases First-Oder Logic vs Temporal logic



Inexpressibility

Lemma 4
If QP is expressible in ETL, then P has constant communication
complexity.

Theorem
Over schemas containing at least one relation of non-zero arity,
there are queries expressible in TS-FO but not in ETL.

Proof (Sketch)

Query Q :
Are there two different states with the same instance?
is expressible in TS-FO but not in ETL.
Query Q is expressible in TS-FO:

∃t∃t ′(t 6= t ′ ∧ (∀x)(S(x , t)↔ S(x , t ′)))

Dariusz Surowik Query temporal databases First-Oder Logic vs Temporal logic



Inexpressibility

Proof (Sketch) ...

On the class of split databases whose left and right parts do not
contain repetitions, Q corresponds to QP , where P is the predicate.
By lemma 2 P does not have constant communication complexity.
Hence, by lemma 4 Q is not expressible in ETL.

Corollary
Over schemas containing al least one relation of non-zero arity, TL
is strictly less expressive than TS-FO.
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Conclusions

Conclusions

Queries in TL (ETL) are simpler than queries in TS-FO.

There are queries expressible in ETL and inexpressible in
TS-FO.

There are queries expressible in TS-FO and inexpressible in
ETL.
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The End
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